
The NGAL TestTM

For Earlier Diagnosis of Acute Kidney Injury (AKI)

Detected 2-3 days before creatinine rises¹

The NGAL Test is CE-Marked for IVD use and is currently available for Research Use Only in the United States.

Benefits

FAST

Responds 2 hours after injury;¹ 2-3 days earlier than serum creatinine.²

PROGNOSTIC

Identifies patients at risk of subclinical through moderate to severe AKI.⁴

CLINICALLY RELEVANT⁵

Informs clinical decisions⁵ around fluid management (diuretics, RRT) and nephrotoxic medications.

EASY

Runs on standard chemistry analyzers; urine or plasma samples.

"NGAL significantly improved the prediction of AKI risk over the clinical model alone."⁵

bioporto.com | info@bioporto.com

© 2023 BioPorto Diagnostics A/S | Tuborg Havnevej 15, st. | DK-2900 Hellerup | (+45) 4529 0000

Acute Disease Quality Initiative (ADQI) 2020 Recommendation

Assessment of Kidney Injury Using Functional and Injury Biomarkers⁷

"Expert consensus identified an **unmet need** for diagnostic tools that identify the location, mechanism, etiology, severity, and prognosis of AKI."⁶

ADQI suggests that "a combination of **damage and functional biomarkers, along with clinical information**, be used to improve the diagnostic accuracy of AKI, to recognize the different pathophysiological processes, to discriminate AKI etiology, and **to assess AKI severity**."⁷

CE-Marked Intended Use

The NGAL Test[™] is a particle-enhanced turbidimetric immunoassay for the quantitative determination of neutrophil gelatinase-associated lipocalin (NGAL) in human urine, EDTA plasma and heparin plasma on automated clinical chemistry analyzers. NGAL measurements are useful in the diagnosis of acute kidney injury which may lead to acute renal failure.

The NGAL Test is CE-Marked for IVD use and is currently available for Research Use Only in the United States.

Heal	thy	NJURY Damaged
FUNCTION	SCr UO NGAL ^{neg} Resolution (normal kidneys)	SCr UO NGAL ^{pos} AKI stage 1S (subclinical) Tubular damage without excretory dysfunction (e.g., subclinical AKI)
Dysfunction FUN	↑ SCr ↓ UO NGAL ^{neg} AKI stage 1A (reversible) Excretory dysfunction without tubular damage (e.g., volume depletion, mild CHF, diureti	Severe AKI with both

Adapted from: De Oliveira et al. Nat Rev Nephrol 2019 & Ostermann et al. JAMA Netw Open. 2020. **Gray** = normal result, **Red** = abnormal result; SCr = serum creatinine, UO = urine output, NGAL = neutrophil gelatinase-associated lipocalin, CHF = congestive heart failure

KDIGO stage-based management of AKI*							
AKI Stage							
High Risk	1	2	3				
Discontinue all nephrotoxic agents when possible							
Ensure volume status and perfusion pressure							
Consider functional hemodynamic monitoring							
Monitor serum creatinine and urine output							
Avoid hyperglycemia							
Consider alternatives to radiocontrast procedures							
	Non-invasive diagnostic workup						
	Consider invasive diagnostic workup						
		Check for changes in drug dosing					
		Consider Renal Replacement Therapy					
		Consider ICU admission					
			Avoid subc	lavian catheters if possible			

REFERENCES: 1. Krawczeski CD, Goldstein SL, Woo JG, et al. J Am Coll Cardiol. 2011. | 2. Devarajan P. Biomark Med. 2010;4(2):265-280. | 3. Haase M, Devarajan P, Haase-Fielitz A, et al. J Am Coll Cardiol. 2011. | 4. Zappitelli M, Washburn KK, Arikan AA, et al. Crit Care. 2007 | 5. Haase-Fielitz A, Haase M, Devarajan P. Ann Clin Biochem. 2014. | 6. Mårtensson et. al. Br J Anaesth. 2012;109(6):843-50. | 7. Ostermann M, Zarbock A, Goldstein S, et al. JAMA Netw Open. 2020. | 8. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Kidney International, Suppl. 2012;2:1-138.

bioporto.com | info@bioporto.com

© 2023 BioPorto Diagnostics A/S | Tuborg Havnevej 15, st. | DK-2900 Hellerup | (+45) 4529 0000